Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Management and Labour Studies ; 48(1):42-63, 2023.
Article in English | ProQuest Central | ID: covidwho-2228133

ABSTRACT

The study attempts to identify the critical enablers that can mitigate supply chain (SC) disruption and model the interconnectedness among them in the context of the Indian Micro, Small and Medium Enterprises (MSMEs). The supply chain in many Indian MSMEs has been seriously affected by the COVID-19 pandemic, bringing forth the need to identify avenues that can mitigate the disruptions. This study conducts a two-stage qualitative interview and a structured interview with MSME owners. Domain experts are associated with the automotive, aerospace and design services industries. Based on their responses, we have identified seven major critical enablers specific in the context of Indian MSMEs. To model the interconnection among these factors, we have used the ISM (Interpretive Structural Modelling) approach. Results suggest that ‘top management support' is the most crucial enabler in the hierarchy. Further, we find that if the supply chain is designed efficiently with redundancy in mind and the culture of the MSME remains conducive, advanced forms of ‘multi-sourcing' and differentiated logistics can be explored to mitigate supply chain disruption.

3.
Nat Microbiol ; 6(1): 73-86, 2021 01.
Article in English | MEDLINE | ID: covidwho-989838

ABSTRACT

Non-human primate models will expedite therapeutics and vaccines for coronavirus disease 2019 (COVID-19) to clinical trials. Here, we compare acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in young and old rhesus macaques, baboons and old marmosets. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies, and both age groups recovered in two weeks. Baboons had prolonged viral RNA shedding and substantially more lung inflammation compared with macaques. Inflammation in bronchoalveolar lavage was increased in old versus young baboons. Using techniques including computed tomography imaging, immunophenotyping, and alveolar/peripheral cytokine response and immunohistochemical analyses, we delineated cellular immune responses to SARS-CoV-2 infection in macaque and baboon lungs, including innate and adaptive immune cells and a prominent type-I interferon response. Macaques developed T-cell memory phenotypes/responses and bystander cytokine production. Old macaques had lower titres of SARS-CoV-2-specific IgG antibody levels compared with young macaques. Acute respiratory distress in macaques and baboons recapitulates the progression of COVID-19 in humans, making them suitable as models to test vaccines and therapies.


Subject(s)
COVID-19/veterinary , Callithrix/immunology , Lung/immunology , Macaca mulatta/immunology , Monkey Diseases/virology , Papio/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Animals , Antibodies, Viral/immunology , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , COVID-19/diagnostic imaging , COVID-19/immunology , COVID-19/pathology , Female , Humans , Immunity, Cellular/immunology , Immunoglobulin G/immunology , Inflammation/pathology , Lung/virology , Male , Monkey Diseases/immunology , Myeloid Cells/immunology , Viral Load , Virus Shedding
4.
Sensors (Basel) ; 20(11)2020 May 29.
Article in English | MEDLINE | ID: covidwho-437281

ABSTRACT

"Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)", the novel coronavirus, is responsible for the ongoing worldwide pandemic. "World Health Organization (WHO)" assigned an "International Classification of Diseases (ICD)" code-"COVID-19"-as the name of the new disease. Coronaviruses are generally transferred by people and many diverse species of animals, including birds and mammals such as cattle, camels, cats, and bats. Infrequently, the coronavirus can be transferred from animals to humans, and then propagate among people, such as with "Middle East Respiratory Syndrome (MERS-CoV)", "Severe Acute Respiratory Syndrome (SARS-CoV)", and now with this new virus, namely "SARS-CoV-2", or human coronavirus. Its rapid spreading has sent billions of people into lockdown as health services struggle to cope up. The COVID-19 outbreak comes along with an exponential growth of new infections, as well as a growing death count. A major goal to limit the further exponential spreading is to slow down the transmission rate, which is denoted by a "spread factor (f)", and we proposed an algorithm in this study for analyzing the same. This paper addresses the potential of data science to assess the risk factors correlated with COVID-19, after analyzing existing datasets available in "ourworldindata.org (Oxford University database)", and newly simulated datasets, following the analysis of different univariate "Long Short Term Memory (LSTM)" models for forecasting new cases and resulting deaths. The result shows that vanilla, stacked, and bidirectional LSTM models outperformed multilayer LSTM models. Besides, we discuss the findings related to the statistical analysis on simulated datasets. For correlation analysis, we included features, such as external temperature, rainfall, sunshine, population, infected cases, death, country, population, area, and population density of the past three months - January, February, and March in 2020. For univariate timeseries forecasting using LSTM, we used datasets from 1 January 2020, to 22 April 2020.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Animals , COVID-19 , Cats , Cattle , Coronavirus Infections/virology , Disease Outbreaks , Humans , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/virology , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL